3.2.8 \(\int \frac {\csc (c+d x)}{\sqrt [3]{a+a \sin (c+d x)}} \, dx\) [108]

Optimal. Leaf size=77 \[ -\frac {\sqrt [6]{2} F_1\left (\frac {1}{2};1,\frac {5}{6};\frac {3}{2};1-\sin (c+d x),\frac {1}{2} (1-\sin (c+d x))\right ) \cos (c+d x)}{d \sqrt [6]{1+\sin (c+d x)} \sqrt [3]{a+a \sin (c+d x)}} \]

[Out]

-2^(1/6)*AppellF1(1/2,1,5/6,3/2,1-sin(d*x+c),1/2-1/2*sin(d*x+c))*cos(d*x+c)/d/(1+sin(d*x+c))^(1/6)/(a+a*sin(d*
x+c))^(1/3)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2866, 2864, 129, 440} \begin {gather*} -\frac {\sqrt [6]{2} \cos (c+d x) F_1\left (\frac {1}{2};1,\frac {5}{6};\frac {3}{2};1-\sin (c+d x),\frac {1}{2} (1-\sin (c+d x))\right )}{d \sqrt [6]{\sin (c+d x)+1} \sqrt [3]{a \sin (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]/(a + a*Sin[c + d*x])^(1/3),x]

[Out]

-((2^(1/6)*AppellF1[1/2, 1, 5/6, 3/2, 1 - Sin[c + d*x], (1 - Sin[c + d*x])/2]*Cos[c + d*x])/(d*(1 + Sin[c + d*
x])^(1/6)*(a + a*Sin[c + d*x])^(1/3)))

Rule 129

Int[((e_.)*(x_))^(p_)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> With[{k = Denominator[p]
}, Dist[k/e, Subst[Int[x^(k*(p + 1) - 1)*(a + b*(x^k/e))^m*(c + d*(x^k/e))^n, x], x, (e*x)^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && FractionQ[p] && IntegerQ[m]

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 2864

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(-b)*(
d/b)^n*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(a - x)^n*((2*a - x)^(m
 - 1/2)/Sqrt[x]), x], x, a - b*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !
IntegerQ[m] && GtQ[a, 0] && GtQ[d/b, 0]

Rule 2866

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Sin[e + f*x])^FracPart[m]/(1 + (b/a)*Sin[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Sin[e + f*x])^
m*(d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rubi steps

\begin {align*} \int \frac {\csc (c+d x)}{\sqrt [3]{a+a \sin (c+d x)}} \, dx &=\frac {\sqrt [3]{1+\sin (c+d x)} \int \frac {\csc (c+d x)}{\sqrt [3]{1+\sin (c+d x)}} \, dx}{\sqrt [3]{a+a \sin (c+d x)}}\\ &=-\frac {\cos (c+d x) \text {Subst}\left (\int \frac {1}{(1-x) (2-x)^{5/6} \sqrt {x}} \, dx,x,1-\sin (c+d x)\right )}{d \sqrt {1-\sin (c+d x)} \sqrt [6]{1+\sin (c+d x)} \sqrt [3]{a+a \sin (c+d x)}}\\ &=-\frac {(2 \cos (c+d x)) \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \left (2-x^2\right )^{5/6}} \, dx,x,\sqrt {1-\sin (c+d x)}\right )}{d \sqrt {1-\sin (c+d x)} \sqrt [6]{1+\sin (c+d x)} \sqrt [3]{a+a \sin (c+d x)}}\\ &=-\frac {\sqrt [6]{2} F_1\left (\frac {1}{2};1,\frac {5}{6};\frac {3}{2};1-\sin (c+d x),\frac {1}{2} (1-\sin (c+d x))\right ) \cos (c+d x)}{d \sqrt [6]{1+\sin (c+d x)} \sqrt [3]{a+a \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]
time = 1.84, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\csc (c+d x)}{\sqrt [3]{a+a \sin (c+d x)}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[Csc[c + d*x]/(a + a*Sin[c + d*x])^(1/3),x]

[Out]

Integrate[Csc[c + d*x]/(a + a*Sin[c + d*x])^(1/3), x]

________________________________________________________________________________________

Maple [F]
time = 0.11, size = 0, normalized size = 0.00 \[\int \frac {\csc \left (d x +c \right )}{\left (a +a \sin \left (d x +c \right )\right )^{\frac {1}{3}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)/(a+a*sin(d*x+c))^(1/3),x)

[Out]

int(csc(d*x+c)/(a+a*sin(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+a*sin(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate(csc(d*x + c)/(a*sin(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+a*sin(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\csc {\left (c + d x \right )}}{\sqrt [3]{a \left (\sin {\left (c + d x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+a*sin(d*x+c))**(1/3),x)

[Out]

Integral(csc(c + d*x)/(a*(sin(c + d*x) + 1))**(1/3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+a*sin(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate(csc(d*x + c)/(a*sin(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sin \left (c+d\,x\right )\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{1/3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(c + d*x)*(a + a*sin(c + d*x))^(1/3)),x)

[Out]

int(1/(sin(c + d*x)*(a + a*sin(c + d*x))^(1/3)), x)

________________________________________________________________________________________